Skip to main content

Advertisement

Log in

Stanley depth of the integral closure of monomial ideals

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \(I\) be a monomial ideal in the polynomial ring \(S=\mathbb K [x_1,\dots ,x_n]\). We study the Stanley depth of the integral closure \(\overline{I}\) of \(I\). We prove that for every integer \(k\ge 1\), the inequalities \(\text{ sdepth} (S/\overline{I^k}) \le \text{ sdepth} (S/\overline{I})\) and \(\text{ sdepth} (\overline{I^k}) \le \text{ sdepth} (\overline{I})\) hold. We also prove that for every monomial ideal \(I\subset S\) there exist integers \(k_1,k_2\ge 1\), such that for every \(s\ge 1\), the inequalities \(\text{ sdepth} (S/I^{sk_1}) \le \text{ sdepth} (S/\overline{I})\) and \(\text{ sdepth} (I^{sk_2}) \le \text{ sdepth} (\overline{I})\) hold. In particular, \(\min _k \{\text{ sdepth} (S/I^k)\} \le \text{ sdepth} (S/\overline{I})\) and \(\min _k \{\text{ sdepth} (I^k)\} \le \text{ sdepth} (\overline{I})\). We conjecture that for every integrally closed monomial ideal \(I\), the inequalities \(\text{ sdepth}(S/I)\ge n-\ell (I)\) and \(\text{ sdepth} (I)\ge n-\ell (I)+1\) hold, where \(\ell (I)\) is the analytic spread of \(I\). Assuming the conjecture is true, it follows together with the Burch’s inequality that Stanley’s conjecture holds for \(I^k\) and \(S/I^k\) for \(k\gg 0\), provided that \(I\) is a normal ideal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apel, J.: On a conjecture of R.P. Stanley. Part II: Quotients modulo monomial ideals. J. Algebraic Combin. 17, 57–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Cambridge Philos. Soc. 86(1), 35–39 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brodmann, M.: Asymptotic stability of \(\text{ Ass}(M/I^nM)\). Proc. Am. Math. Soc. 74, 16–18 (1979)

    MathSciNet  Google Scholar 

  4. Bruns, W., Krattenthaler, C., Uliczka, J.: Stanley decompositions and Hilbert depth in the Koszul complex. J. Commut. Algebra 2, 327–357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burch, L.: Codimension and analytic spread. Proc. Cambridge Philos. Soc. 72, 369–373 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Herzog, A survey on Stanley depth. Preprint

  7. Herzog, J., Hibi, T.: Monomial Ideals. Springer, Berlin (2011)

  8. Herzog, J., Rauf, A., Vladoiu, M.: The stable set of associated prime ideals of a polymatroidal ideal. J. Algebraic Combin. (to appear)

  9. Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)

  10. Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322(9), 3151–3169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishaq, M.: Upper bounds for the Stanley depth. Comm. Algebra 40, 87–97 (2012)

    Google Scholar 

  12. Ishaq, M.: Values and bounds of the Staney depth. Carpathian J. Math. (to appear)

  13. Jarrah, A.S.: Integral closures of Cohen-Macaulay monomial ideals. Comm. Algebra 30, 5473–5478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. McAdam, S.: Asymptotic prime divisors and analytic spreads. Proc. Am. Math. Soc. 80, 555–559 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. McAdam, S.: Asymptotic Prime Divisors. Lecture Notes in Mathematics, vol. 103. Springer, New York (1983)

  16. Pournaki, M.R., Seyed Fakhari, S.A., Tousi, M., Yassemi, S.: What is \(\ldots \) Stanley depth? Notices Am. Math. Soc. 56(9), 1106–1108 (2009)

    Google Scholar 

  17. Pournaki, M.R., Seyed Fakhari, S.A., Yassemi, S.: On the Stanley depth of weakly polymatroidal ideals. Submitted

  18. Pournaki, M.R., Seyed Fakhari, S.A., Yassemi, S.: Stanley depth of powers of the edge ideal of a forest. Proc. Am. Math. Soc. (to appear)

  19. Ratliff, L.J.: On prime divisors of \(I^n\), \(n\) large. Michigan Math. J. 23(4), 337–352 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ratliff, L.J.: On asymptotic prime divisors. Pac. J. Math. 111(2), 395–413 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stanley, R.P.: Linear Diophantine equations and local cohomology. Invent. Math. 68(2), 175–193 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Villarreal, R.H.: Monomial Algebras. Dekker, New York (2001)

    MATH  Google Scholar 

  23. Vasconcelos, W.: Integral Closure, Rees Algebras, Multiplicities Algorithms. Springer Monographs in Mathematics. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgments

This work was done while the author visited Philipps-Universität Marburg supported by DAAD. The author thanks Jürgen Herzog and Volkmar Welker for useful discussions during the preparation of the article. He is also grateful to Irena Swanson for generously sharing her knowledge about integral closure. He also thanks Siamak Yassemi for reading an earlier version of this article and for his helpful comments. The author would like to thank the referee for his/her careful reading of the paper and for his/her valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Seyed Fakhari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyed Fakhari, S.A. Stanley depth of the integral closure of monomial ideals. Collect. Math. 64, 351–362 (2013). https://doi.org/10.1007/s13348-012-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-012-0077-9

Keywords

Mathematics Subject Classification (2000)

Navigation